US009185082B2

a2 United States Patent

Dashora et al.

US 9,185,082 B2
*Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR ADAPTIVE USPC .o 713/151, 152, 167, 726/3, 13
APPLICATION MESSAGE PAYLOAD See application file for complete search history.
CONTENT TRANSFORMATION IN A
NETWORK INFRASTRUCTURE ELEMENT (56) References Cited

(71) Applicant: Cisco Technology, Inc., San Jose, CA U.S. PATENT DOCUMENTS

(US)
*
(72) Inventors: Vinod Dashora, Fremont, CA (US); 2:?22:3‘22 ﬁ 1%833 Ez’tgg ::;11" """""""""" 77147
Sandeep Kumar, Cupertino, CA (US) .
(Continued)
(73) Assignee: CISCO TECHNOLOGY, INC., San
Jose, CA (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject. to any disclaimer,. the term of this EP 1011244 A2 62000
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
This patent is subject to a terminal dis- Brewer, Eric A., et al. “A network architecture for heterogeneous
claimer. mobile computing.” Personal Communications, IEEE 5.5 (1998):
(21) Appl. No.: 13/745,692 g4 ,
(Continued)

(22) Filed: Jan. 18, 2013

(65) Prior Publication Data Primary Examiner — Kari Schmidt
US 2013/0132518 A1 May 23, 2013 (7.4) Attorney, Agent, or Firm — Hickman Palermo Becker

Related U.S. Application Data Bingham LLP

(63) Continuation of application No. 11/398,983, filed on (57) ABSTRACT
Apr. 5, 2006, now Pat. No. 8,458,467. Application message payload data elements are transformed

(60) Provisional application No. 60/692,715, filed on Jun. withina net\york infrastructure element such as e}pagket data
1. 2005. T router or sw1tch..The ne.twork eleme;nt has application mes-

’ sage transformation logic for receiving one or more packets

(51) Int.ClL representing an input application message logically associ-
HO4L 29/06 (2006.01) ated with OSI network model Layer 5 or above; extracting an
GOG6F 9/445 (2006.01) application message payload from the input application mes-

(Continued) sage; identifying one or more first content elements in the

(52) U.S.CL application message payload; transforming the first content

CPC oo HO4L 63/0428 (2013.01); GO6F 8/67 elements into one or more second content elements of an
(2013.01); HO4L 29/06 (2013.01); HO4L output application message; and forwarding the output appli-

41/026 (2013.01); cation message to a destination that is identified in the input

(Continued) application message. Transformations performed in the net-

work element can include field reordering, field enrichment,

(58) Field of Classification Search field filtering, and presentation transformation.

CPC ... HO4AL 63/102; HO4L 63/12; HO4L 63/0245;
HOA4L 63/0428

120
-7

26 Claims, 9 Drawing Sheets

110
112~ !

L Router 716 1084

Internetwork)} 4 f il

Locdl b o L aows Blade Receivi
............................. Networic > Network 5 ecelving
. Application
, Application Server(s)

Hessage Pavioud {
Transformation | 1
Logic 108

US 9,185,082 B2

Page 2

(51) Int.ClL 2006/0074981 Al* 4/2006 Maucerietal. ... 707/104.1
HO4L 1224 (2006.01) 2006/0149840 Al* 7/2006 Thompsonetal. ... 709/224
H04L 12/26 (2006.01) 20130132315 A1 52013 Dashora
HO4L 12/701 (2013.01) 2014/0032690 Al 1/2014 Ramarao
HO4L 12/771 (2013.01)
HO4L 29/08 (2006.01) OTHER PUBLICATIONS

(52) US.CL. S Alex C., et al. “Single-packet IP traceback.” IEEE/ACM
CPC .. HO4L 41/5003 (2013.01); HO4L 41/5009 noeretl, Alex L., ¢ @, Sigiepactel |- Aacehack.

(2013.01); HO4L 41/5012 (2013.01); HO4L
41/5096 (2013.01); HO4L 43/0811 (2013.01);
HO4L 45/00 (2013.01); HO4L 45/56 (2013.01);
HO4L 45/563 (2013.01); HO4L 63/0245
(2013.01); HO4L 63/08 (2013.01); HO4L
637102 (2013.01); HO4L 63/12 (2013.01);
HO4L 67/02 (2013.01); HO4L 67/34 (2013.01);
HO4L 69/22 (2013.01); GOG6F 2221/2141
(2013.01); HO4L 41/06 (2013.01); HO4L
41/0893 (2013.01); HO4L 41/12 (2013.01);
HO4L 41/22 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,389,462 Bl 5/2002 Cohen et al.

6,683,881 B1* 1/2004 Mijares etal. 370/401
6,718,326 B2 4/2004 Uga et al.

6,766,361 Bl 7/2004 Venigalla

6,820,133 Bl 11/2004 Grove et al.

6,901,445 B2 5/2005 McCanne et al.

6,976,085 B1 12/2005 Aviani et al.

7,058,973 B1* 6/2006 Sultanccceoovveernn. 726/12
7,080,158 Bl 7/2006 Squire

7,127,492 B1 10/2006 Calo

7,185,063 Bl 2/2007 Kasriel et al.

7,188,216 Bl 3/2007 Rajkumar et al.

7,362,763 B2 4/2008 Wybenga et al.

7,376,750 B1* 5/2008 SImuccccooviiviiiiinne 709/245
7,451,392 B1* 11/2008 Chaleckietal. 715/234
7,590,704 B2 9/2009 Yuan et al.
7,987,271 Bl 7/2011 O’Toole, Jr. et al.
8,255,932 B1* 82012 Clemmetal. 719/329
2002/0059428 Al 5/2002 Susai et al.
2003/0069975 Al* 4/2003 Abjanicetal. 709/227
2004/0032881 Al 2/2004 Arai
2004/0064586 Al 4/2004 Weigand
2004/0167986 Al* 82004 Gilfixetal. ... 709/230

2004/0177160 Al* 9/2004 Setoetal. ... e 709/246
2004/0205136 Al* 10/2004 Whittenberger etal. ... 709/206
2005/0015619 Al* 1/2005 Lee 713/201
2005/0050021 Al* 3/2005 Timmons 707/3
2005/0076332 Al* 4/2005 Jawaharlaletal. ... 717/140
2006/0064467 Al 3/2006 Libby

Transactions on Networking (ToN) 10.6 (2002): 721-734.*
Intellectuall Property India, First Examination Report in application
No. 3155/DELNP/2007, dated Apr. 25, 2013, 1 page.

Current Claims in application No. 3155/DELNP/2007, dated Apr.
2013, 10 pages.

State Intellectual Property Office of the People’s Republic of China,
“The Third Office Action” in application No. 200580041997 .4 dated
Apr. 19, 2013, 7 pages.

Current Claims in application No. 200580041997 .4, dated Apr. 2013,
7 pages.

China Patent Office, CN 4th Office Action received in International
Application No. 200580041996 .X dated Jun. 26, 2012 (8 pages).
Current Claims, Application No. 200580041996 X, dated Jun. 2012
(5 pages).

State Intellectual Property Office of the People’s Republic of China,
“The Fifth Office Action” in application No. 200580041996, dated
Oct. 8, 2012, 8 pages.

Current Claims in application No. 200580041996, dated Oct. 2012, 5
pages.

European Patent Office, “Search Report” in application No.
05852737.5-1853, dated Aug. 21, 2013, 6 pages.

Current Claims in application No. 05852737.5-1853, dated Aug.
2013, 5 pages.

European Patent Office, “Search Report”, in application No. 05 820
894.3-1954, dated Oct. 7, 2013, 7 pages.

Current Claims in application No. 05 820 894.3-1954, dated Oct.
2013, 5 pages.

Roesch, M., “Snort—Lightweight Intrusion Detection for Net-
works”, Proceedings of the Systems Administration Conference,
dated Nov. 7, 1999, 11 pages.

European Patent Office, “Search Report” in application No.
05854364.6-1870, dated Nov. 25, 2014, 7 pages.

Claims in European Application No. 05854364.6-1870, dated Nov.
2014, 4 pages.

European Patent Office, “Search Report” in application No. 05 854
364.6-1870, dated May 6, 2105, 4 pages.

Claims in European Application No. 05 854 364.6-1870, dated May
2015, 4 pages.

International Searching Authority, “Search Report” in application
No. PCT/US2015/024930, Dated Jul. 21, 2015, 12 pages.

Claims in application No. PCT/US2015/024930, Dated Jul. 2015, 6
pages.

* cited by examiner

US 9,185,082 B2

Sheet 1 of 9

Nov. 10, 2015

U.S. Patent

g01 sbey
N LYHIDUIIISUDAS
Y pooog ebpssew
(s Jisriss uorzpoddy
(011 D04d Y et SIOMION
Eunisos IOM]E
weosy ||| epoig shov || 500 sy TS
p L\ NIOMJSUIBIUT =
T TEYY Wmmmomm 21, ALY
. -
r
i @N\N £0!
gl Ol
ABpUET

U.S. Patent Nov. 10, 2015 Sheet 2 of 9
FiG 2A
210
’ X8
206 202 214
\"_,.\ i o, . j i
E XSLT ™ Ouiput
I DOMSouros SABosed Transformabtions] lew
208_[" ¥ Reader
&

@ xmiiloc Reoder

(SAX Tmnsfoﬁnaﬁmiiandi

@ non xmi Doc Reodsr -y
@ XY Reoder D1
i Fix Reader...efo

FiG. 28

Transtorm

218
(
XSLTC Complier |

fran

E iBased Tronsformations

X&SLIC

206

| DOMSource
/’—E SAX Reader
£08

@ xnilloc Keoder
e nron xmi Doc Reoder
R OSV Reoder

@ Fix Reoder..elc.

g XML or non—XML

212 message

US 9,185,082 B2

US 9,185,082 B2

Sheet 3 of 9

Nov. 10, 2015

U.S. Patent

JOSESI0A §ISK

ooy
FULUDL [IGK o | LI8K~00 T bs
ﬁ a¥OAL P n “ S pausiogsiin
0dino
SUIGUBIRE
@m%&%&&m&h - gm%awmwm%% Mm&] BLDSSBHBI0E] w
JBLIIOISURY [ISK stg
J
Nm\N/ 1BIEpig
\ | BuOis UL} | js-guBiin wOgE e
9oL } ey
) g0c JUBJUOTD UM MOY G
P8I~ U O] MO UOID.1BG0 B U ROYS
m,EEQEk&wt@h_ [WpIndg
ULIOSUDY] 7
e SO DD X LI Pt DADRODUIXD
18— 3USIUOD MOYS
o~ HAD - RIDFS - JUBLUOD SMOYS
405 1B O~ BB~ 1] MOYG Zor"
bsus~indu

£ ©ld

US 9,185,082 B2

Sheet 4 of 9

Nov. 10, 2015

U.S. Patent

unjey

pue ajessd ‘paunddo

uondaoxa molyy

uojdasxa j| ZTh

‘u

se yied jndino jes

$5920ng

¢¥S1] U1 Jusjuoo
3IO0N 2V

ondaoxa ou)t 0P

192(qo Wajuod
ynsa1 811 Uk

ul Jst| 1991qo Jusyuod
joynssas aoeld By

a|qeuBA MOy

A

[

poylaw
UOIBULIOJSUBJ] 80IAJBS
wlojsues axoAu| JTF

18l

anyy si Bey sumIBAQ
J1 JUB1U0 JNdINo ypm

%

indu) aceiday Oy

103lqo ynsa:
weans aieald ITF

+

ON

80Inos WOQd
aear] FIv

¢dv0s 10
TNX ¢TI

90IN0S Weans
aeald 01

Suealls
Wsju0) B0F

108[q0 92.n0S WIOjSULY)
21BaID JUBLISS
U8IU02 108193 T0F

|

S3A

AR

181] Juajuo9 Indul
Ul SjusWiae JUsjuod
lfe 10} doo| yeys 0¥

NOILVZIVILINI Z0¥%

U.S. Patent Nov. 10, 2015 Sheet 5 of 9 US 9,185,082 B2

FiG. &

§ Inheritance

Servi Association
E:é;@ * eguivalent o0 Q.

E:

l Transfermaiimﬁerviceg E Sadelet E

E?’rmsfmmm‘ionSemiaeImpf ga Y3Sesg g fransformationSladeiet §
i
. : cregtes
transformer—regisiry | P
L* - ADNS FransformerFactory E
i AQNSTransTormer [
XSL Transtormerfactory E
‘ XSLTTronsformer
Uses arg.xmi,sax.xmﬁéaﬁerg
o AbstroctXMLReoder |
defegates
Xalan XSLT Process ; ExtensionXii Reader

JO-XSLT Frocessor | CSVXMIReoder

US 9,185,082 B2

Sheet 6 of 9

Nov. 10, 2015

U.S. Patent

{4aus03807)
{4BU01sn) J03DASIUNUDY Jusuoidss
1sdpuy ssousng DELILIBYY
ID}S PUD P}D4a8s proids
o~
teg\.wu&k&mmmh 810847 5%3
P F
¥ Giavoisiaaid
40} 438027
S0 UOIIDIBUSY . qr— Borond Burosino.y
uoppuLIoSUDY | o | wepsAsey g pup) pup
008G A1Bdus 53994So1S 1Sy FSABUWOISNG] pooidn uonoinbiue)
2403G / g SNOY
o
opas
UOBOUISUDL] Woish?
SNOV 5av * 40
spoeyssif1s [15x
LOISIAD drf
SIHAB~SHNOY Y/

i

P

H

ve ol

US 9,185,082 B2

Sheet 7 of 9

Nov. 10, 2015

U.S. Patent

(L1sX
‘sweu ajpung) Ad1j0d

wiojsues) ZT9

OWYV $09

(ssepo
uibn|4 ‘eweu ajpung)
d3d 919 uibn|d Jasied $19
sav 209
_
(s)aty (s)aly
yvr ‘sseo uibnid UV LISX 1sajluepy
:a)pung puodas JT9|| :eipungisi4 809

g9 "b14

NOV 909

US 9,185,082 B2

Sheet 8 of 9

Nov. 10, 2015

U.S. Patent

Adpag

Aupsgry 15X

BLIURY CAIUCY ¥ seossy pup Busing | gy
DEEDG—5
SB{PUDH 2ydopy] 75X
VOIIDULICISUDL] OAIIUOS) LR pasog e L 0L
- Ausibey
o1t~ BIIAISE UDIIDULIDISUDA] spupy 7 HOL
(A o4/ eoinos] cwnuyg
DoULICISURY] JON ULIYBUDL] 3 NSBY 3
7 5 — 92
917~ AV [enpd p—p] dop
U4X] PBSDE OCAUO,
P—— J%] PasDg CAUOD
a4 UORDULIGISUDL] | Fard T
U4X{ DBRSDE I85UDIS
[sand A-pj dop ey
Ufx] pasog [ISX o
OIS UDYY
{ . [oruog/18isund) /115X]
gis abossayy hmE\.ﬁmm%&m oy

{
viL—

4

-

LEILDYOBY UJX]

!

J
A (1L vl "

US 9,185,082 B2

Sheet 9 of 9

Nov. 10, 2015

U.S. Patent

[2449 N s
1SOH .— i N EET
0zs | 0w
| 8IS
MHOMLIN ' 30v4u3INl || P05
W01 | ¥0SS300¥d
\m; _ ST WALSAS NOILYDINNWINOD
\ —| ONIHOLIMS
N [
|
|
|
I 208
_ sng
|
|
|
LINYILNI _
|
_ 01s g0% 303
_ 301A3Q AHOWIW
0es ! 39VHOLS WOy NIVIA
HINYIS |

US 9,185,082 B2

1
METHOD AND APPARATUS FOR ADAPTIVE
APPLICATION MESSAGE PAYLOAD
CONTENT TRANSFORMATION IN A
NETWORK INFRASTRUCTURE ELEMENT

PRIORITY CLAIM
Cross-Reference to Related Applications

This application claims the benefit as a Continuation of
application Ser. No. 11/398,983, filed Apr. 5, 2006, which
claims the benefit under 35 U.S.C. §119(e) of provisional
application 60/692,715, filed Jun. 21, 2005, the entire con-
tents of which are hereby incorporated by reference as if fully
set forth herein. The applicant(s) hereby rescind any dis-
claimer of claim scope in the parent application(s) or the
prosecution history thereof and advise the USPTO that the
claims in this application may be broader than any claim in
the parent application(s). This application is generally related
to prior application Ser. No. 10/991,792, filed Nov. 17, 2004.

FIELD OF THE INVENTION

The present invention generally relates to data processing
techniques performed within network infrastructure elements
such as routers and switches. The invention relates more
specifically to techniques for transforming network message
payloads into different internal formats.

BACKGROUND

The approaches described in this section could be pursued,
but are not necessarily approaches that have been previously
conceived or pursued. Therefore, unless otherwise indicated
herein, the approaches described in this section are not prior
art to the claims in this application and are not admitted to be
prior art by inclusion in this section.

Software applications operating in a network environment
produce or consume application messages. For example, a
client software element hosted at an end station device such as
a personal computer or workstation may form and send a
message to a corresponding application server that is hosted
in a network. Each message typically comprises one or more
headers and a payload that contains application-specific
information. Messages may be contained in more than one
data frame, packet, segment, or other unit of organization
under a network communication protocol. In the description
herein, a “message” is a set of data relating to an application
and associated with Layer 5, 6 or 7 of the OSI network
reference model.

Such application-layer messages often need to be changed
or transformed so that applications consuming the messages
can handle them. These messages can arrive at a network
device over different lower-layer protocols, such as HTTP,
HTTPS, IMS, MQ, RV, and certain proprietary protocols that
use TCP or UDP as a transport. Typically, a receiving appli-
cation must receive a message in a particular format that the
application understands. As a result, some intermediary pro-
cessing unit must transform an inbound message to the
required format for the application.

Generally, in past approaches such transformations have
been performed using applications or mechanisms that are
running on a host associated with an application endpoint. For
example, an application server may include transformation
logic. But as applications and their message formats evolve,
each sending and receiving application is required to accom-
modate an increasing number of different application-layer

10

15

20

25

30

35

40

45

50

55

60

65

2

message formats. The transformation logic at each applica-
tion server requires modification to accommodate new for-
mats. This is time-consuming and requires significant
resources in programming labor. There is a need for an
improved approach for performing application-layer trans-
formation that does not require re-coding or modifying appli-
cation servers, clients, or other end stations.

Further, in typical past approaches, application message
transformation is performed either by an application consum-
ing the message, or by a process or mechanisms running on a
host on behalf of the application consuming the message.
Alternatively, message transformation is performed by the
application producing the message, based on the target appli-
cation endpoint.

In all these cases, the number of points at which transfor-
mation is performed increases based on the number of appli-
cation endpoints producing or consuming the message. For
example, if seven instances of a database application were
hosted in a particular server, then in the conventional
approach, all seven instances would have to perform message
payload transformation. This is a waste of application pro-
cessing resources. There is a need for a more efficient
approach that can somehow consolidate, at a single process-
ing point, all message payload transformation work for a
plurality of instances of an application or for multiple differ-
ent applications.

One approach for performing message transformation is
described in prior application Ser. No. 10/991,792, filed Nov.
17, 2004, of Pravin Singhal et al. (“Singhal et al.”’), and
assigned to the assignee hereof. The approach of Singhal et al.
provides mechanisms for transport protocol message broker-
ing. For example, the approach of Singhal et al. can receive a
message that uses the HTTP protocol and change that mes-
sage into an MQ message. However, the approach of Singhal
et al. does not change, modify or transform data contained
within a payload portion of the inbound message. Thus, if an
inbound HTTP message contains an XML document as a
payload, but a receiving application requires a particular kind
of FIX or COBOL CopyBook message payload as input, the
approach of Singhal does not provide a solution. In contrast,
Singhal et al. would be able to change the inbound HTTP
message into an IBM MQ message carrying the same XML
document as a payload.

Further, if the inbound message has an XML payload con-
taining a “date” data field that is expressed in “MMDDYY”
format, but the receiving application requires all dates to be
expressed in “YYYYMMDD” format, the approach of Sin-
ghal does not provide a solution.

Thus, based on the clear deficiencies of past approaches,
there is a need for an approach that can perform message
payload transformation independent of the application trans-
port protocols that carry such payloads.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1A is a block diagram that illustrates an overview of
a network arrangement that can be used to implement an
embodiment;

FIG. 1B is a block diagram showing application message
payload transformation logic in a network infrastructure ele-
ment such as a router, in one embodiment;

US 9,185,082 B2

3

FIG. 2A is a block diagram of software elements that may
be used to implement XS T-based application message pay-
load transformation, in one embodiment;

FIG. 2B is a block diagram of software elements that may
be used to implement XSLTC-based application message
payload transformation, in one embodiment;

FIG. 3 is a data flow diagram that shows transformation of
an application message payload, in one embodiment;

FIG. 4 is a flow diagram that illustrates a high level over-
view of one embodiment of a method for application message
payload transformation in a network infrastructure element;

FIG. 5 is a block diagram of a class relationship for an
implementation in an object-oriented programming environ-
ment;

FIG. 6A is a block diagram showing steps involved in one
embodiment of creating and deploying transformations in a
network infrastructure element;

FIG. 6B is a block diagram showing steps involved in one
embodiment of creating and deploying transformations in a
network infrastructure element;

FIG. 7 is a block diagram of a software stack that may be
used to implement one embodiment of application message
payload transformation in a network infrastructure element;
and

FIG. 8 is ablock diagram that illustrates a computer system
upon which an embodiment may be implemented.

DETAILED DESCRIPTION

A method and apparatus for application message payload
transformation in a network infrastructure element are
described. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that the
present invention may be practiced without these specific
details. In other instances, well-known structures and devices
are shown in block diagram form in order to avoid unneces-
sarily obscuring the present invention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 General Overview

2.0 Structural and Functional Overview

3.0 Application Message Payload Transformation

Approaches

3.1xSLT-Based Transformation

3.2 Message Flow within a Network Element

3.3 Transformation Design Example
3.3.1 Transformation Bladelet and Parameters
3.3.2 Transformation Policy Configuration
3.3.3 Transformation Parser Policy Configuration
3.3.4 Class Implementation
3.3.5 Creating and Deploying Transformations

4.0 Implementation Mechanisms—Hardware Overview

5.0 Extensions and Alternatives

1.0 General Overview

The needs identified in the foregoing Background, and
other needs and objects that will become apparent for the
following description, are achieved in the present invention,
which comprises, in one aspect, a data processing apparatus
comprising a plurality of network interfaces that are coupled
to a data network for receiving one or more packets therefrom
and sending one or more packets thereto; one or more pro-
cessors; a switching system coupled to the one or more pro-
cessors and packet forwarding logic, wherein the switching
system and packet forwarding logic are configured to receive
packets on a first network interface, determine a second net-

20

40

45

50

55

4

work interface on which to send the packets, and to send the
packets on the second network interface; and application
message transformation logic comprising one or more stored
sequences of instructions which, when executed by the one or
more processors, cause the one or more processors to per-
form: receiving one or more packets representing an input
application message logically associated with OSI network
model Layer 5 or above; extracting an application message
payload from the input application message; identifying one
or more first content elements in the application message
payload; transforming the first content elements into one or
more second content elements of an output application mes-
sage; and forwarding the output application message to a
destination that is identified in the input application message.

In one feature of this aspect, the apparatus further com-
prises sequences of instructions which, when executed by the
processor, cause the processor to perform transforming the
first content elements into one or more second content ele-
ments of an output application message by any of field reor-
dering, field enrichment, field filtering, and presentation
transformation.

In another feature, the apparatus further comprises
sequences of instructions which, when executed by the pro-
cessor, cause the processor to perform transforming the first
content elements into one or more second content elements of
an output application message by any one of: structural reor-
dering; complex map, schema, and dictionary-based transfor-
mation; content formatting at the presentation layer, such as
XML to HTML and WML transformation, or transformation
based on required media types of the receiver; personaliza-
tion; security credential mapping; content aggregation; con-
tent splitting; service interface virtualization; performing
content-based lookup, extraction, routing and distribution;
content validation; data validation; and code page translation.

In a further feature, the application message payload trans-
formation logic comprises a transformer bladelet that uses a
transformation service, and a transformer factory that creates
a transformer function that is registered in the transformation
service. In another feature, the transformer function is
coupled to an extensible XSLT transformer that comprises an
XSLT processor and an XML reader. In yet another feature,
the transformer function comprises a translet-based transfor-
mation function, and wherein the transformer function is
coupled to an XSLTC compiler, and wherein the transformer
function comprises logic configured to invoke the XSLTC
compiler to compile an XSL transform file into one or more
translets.

In still another feature, the apparatus comprises any of a
packet data router and a packet data switch in a packet-
switched network. In yet another feature, a transformation
policy is received, and specifies what transformation opera-
tions to perform on the application message payload, which
translator to use, and a content type of the output message,
and the transforming step is performed based on the transfor-
mation policy.

In other aspects, the invention encompasses a machine-
implemented method and a computer-readable medium con-
figured to carry out the foregoing steps.

2.0 Structural and Functional Overview

FIG. 1A is a block diagram of network elements involved
in an application message payload transformation approach
according to an embodiment. FIG. 1B is a block diagram
showing application message payload transformation logic in
a network infrastructure element such as a router, in one
embodiment.

Referring first to FIG. 1A, a sender application 102 is
coupled through a network 104 to a receiver application 106.

US 9,185,082 B2

5

The network 104 comprises one or more network infrastruc-
ture elements 110, such as routers or switches. Each of the
network elements 110 comprises one or more blades, blade-
lets, scriptlets, or other software elements, alone or in com-
bination with hardware or firmware elements, that implement
application-layer message inspection and related application
message payload transformation functions as described
herein. An “application message,” as used herein, refers to a
message emitted or consumed by a software element that is
logically located at Layer 5 or higher of the OSI reference
model.

A commercial embodiment of network elements 110A
may comprise routers or switches from Cisco Systems, Inc.,
San Jose, Calif., with blades having Application-Oriented
Networking Services (AONS) capabilities. In some embodi-
ments, network elements 110A are termed “AONS nodes” or
“AONS endpoints.” Other network elements 110B may be
non-AONS nodes. Further, network elements 110A need not
use Cisco AONS technology; the network elements can com-
prise routers or switches that use other internal elements for
performing message inspection, processing or transformation
within the network elements. Thus, the use of AONS in an
embodiment is not required, and all references herein to
AONS clements are provided merely to illustrate a clear
example, and not as limitations.

As seen in FIG. 1B, in some embodiments sender 102 is
coupled through a local network 103 to an internetwork 120
that is coupled to a second local network 112. Either network
103, 112 may have network elements 110 that implement the
techniques herein. As an example, in FIG. 1B local network
112 hosts router 110, comprising AONS blade 116 and appli-
cation message payload transformation logic 108. In certain
embodiments all the network elements 110 include applica-
tion message payload transformation logic 108, which com-
prises one or more computer programs, programmatic
objects, or other software elements that implement the func-
tions described herein.

AONS endpoints may use different formats for the mes-
sages that they produce or consume. For example, a message
produced by an endpoint may conform to a format that may be
different from the format expected by an endpoint that con-
sumes the message. Further an endpoint may produce or
consume XML or non-XML messages or use a different
structure for message content. In the example of FIG. 1, the
sender of a message may specify certain customer informa-
tion in a detailed form, whereas the receiver of the message
only expects abbreviated customer information.

In other examples, transformation of an application mes-
sage payload may be needed for the sender 102 and receiver
106 to communicate and process requests and responses.
Example message payload transformations include field reor-
dering, field enrichment, field filtering, and presentation
transformation.

In Field Reordering, sender 102 sends a message that con-
tains fields in a certain order that is different from an order that
receiver 106 requires. For example, sender 102 sends a mes-
sage with the fields of Table 1A below, but receiver 106
requires fields in the order of Table 1B:

TABLE 1A

SENDER FIELD ORDER

<shipping-address>
<first-name>John</first-name>
<last-name>Doe</last-name>
<.>

</shipping-address>

—

0

15

20

25

30

35

40

45

50

55

60

65

6
TABLE 1B

RECEIVER FIELD ORDER

<shipping-address™>
<last-name>Doe</last-name>
<first-name>John</first-name>
<.>

</shipping-address>

In Field Enrichment and Field Filtering, sender 102 sends
some information that receiver 106 does not expect. Thus, the
information needs to be filtered so that receiver 106 can
correctly process the message. For example, sender 102 may
include a <middle-name> field in data representing a person
in a shipping address, but the receiver 106 may not expect that
field. In response, in the approach herein an application mes-
sage payload transformation process removes the unexpected
field before delivering the message to the receiver 106. Alter-
natively, if receiver 106 does expect a middle name field but
sender 102 sends a message that does not have that field, then
the application message payload transformation logic 108
inserts an empty middle-name field.

In Presentation Transformation, a message payload is
transformed to conform to a specific presentation format that
the receiver 106 expects. For example, assume that receiver
106 sends a response carrying an XML payload, but sender
102 needs to display the response on a browser associated
with the sender. The application message payload transfor-
mation logic 108 transforms the XML data into an HTML
document and places the HTML document into the message
payload before forwarding the message to the sender 102. As
a result, sender 102 can display the content of the payload.
Alternatively, if the receiver 106 is using a device that
requires content in a message payload to be displayed be in
WML, then the application message payload transformation
logic 108 converts the message payload to WML so that the
receiver can correctly display the content.

As another example, the application message payload
transformation logic 108 can transform a non-XML message
payload to a corresponding XML format. For example,
assume that a message payload that is in CSV format needs to
be presented to receiver 106 in an XML format. Alternatively,
assume that sender 102 sends a FIX message, but receiver 106
expects the message to be in FIXML format. In both cases, the
application message payload transformation logic 108 trans-
forms the payload from FIX format to FIXML format and
forwards the message to the receiver 106.

Generally, in all the preceding cases, the application mes-
sage payload transformation logic 108 performs a transfor-
mation function on an in-coming message and produces an
outgoing message. In an embodiment, local network 112 is
associated with one or more receiving application servers
106A, which host one or more instances of one or more
applications. Thus, in the arrangement of FIG. 1B, router 110
is proximate to the receiving application servers 106A, and
can perform application message payload transformation for
all the application servers. For example, sender 102, and other
senders at different locations in networks 103, 120, might
send different requests to different instances of applications
on different application servers 106A. The application mes-
sage payload transformation logic 108 can perform applica-
tion message payload transformation for all such requests,
relieving the application instances and application servers
106 A from the processing burden of performing application
message payload transformation for each request.

Alternatively, if router 110 is located in local network 103,
the router can perform application message payload transfor-
mation when sender 102 emits messages and before the mes-
sages reach the application servers 106A. In all such cases,

US 9,185,082 B2

7

the data processing efficiency of the application servers 106 A
is greatly improved because router 110 is responsible for
message transformation, and the application servers are
responsible only for performing substantive application func-
tions.

Thus, according to one embodiment, message payload
transformation is performed in a network device based on the
requirements of a consuming application. In this approach, a
message is transformed outside the application producing or
consuming such message. In a specific embodiment, message
payload transformation is performed in a network infrastruc-
ture element, such as a router or a switch in a packet-switched
network.

When message payload transformation is performed in a
network device, the transformation can be performed on a
device that is closer to the application that is producing the
message or the application that is consuming the message. As
a result, if there are multiple instances of an application
running, possibly on different hosts, then a single device
through which all the messages are passing can perform the
needed transformation. Accordingly, efficiency of the overall
network is improved.

In an embodiment, message payload transformation is
specified by declarative policies based on the source and
target endpoints of the application and contents of the mes-
sage. A policy can define a “custom” message payload trans-
formation in terms of particular message attributes, variables
or values. A policy defines what part of a message is operated
upon, how to transform the message, and the form of the
output. The policies can be deployed on a network device at
which the message payload transformation is performed.

In this approach, applications do not need to change based
on changes in the kind of message that the applications con-
sume. Further, when message payload transformation is per-
formed on a network device, the transformation can be per-
formed at fewer locations in the network, thus reducing
application processing resources.

In one embodiment, XSI.T-based Transformation Engines
perform XML and non-XML message transformation. The
XSLT-based Transformation Engines implement the XSLT
1.x and XSLT 2.0 specifications as defined by the W3C con-
sortium (w3c.org). At the time of this writing, XSLT specifi-
cations are available online in the folder /TR/xslt of the
domain “w3c.org” on the World Wide Web. In one embodi-
ment, the application message payload transformation logic
108 is extensible in its use of XSLT processor. Thus, the
application message payload transformation logic 108 is
structured to allow the use of a different XSLT processor if
required.

In an embodiment, the application message payload trans-
formation logic 108 is extensible. The application message
payload transformation logic 108 can be augmented by inte-
grating a third party application that provides a specialized
transformation function. For example, a scriptlet can be used
to build a transformation component that uses a third-party
tool or application. The application message payload trans-
formation logic 108 performs transformations only on mes-
sage payloads, and is not involved in the transport mechanism
that is used to move the message among network elements.

Extensions to the application message payload transforma-
tion logic 108 can be implemented by providing a Parser
Plugin and Custom Transformer extension. In an embodi-
ment, the Parser Plugin and Custom Transformer extension
are JAVA language object implementations, and are devel-
oped using the JAVA development environment. For example,

10

15

20

25

30

35

40

45

50

55

60

65

8

creating a Parser Plugin Package in JAVA can be performed to
extend the application message payload transformation logic
108.

In one embodiment, Transform and Transform Parser
bundles, Transformation Policies, Transformation Flows are
created and deployed to network elements 106. After such
deployment, network elements 106 can receive and transform
messages. In an embodiment, application message payload
transformation logic 108 performs one or more message pay-
load transformations include any of field reordering, field
enrichment, field filtering, and presentation transformation.
Such transformations may include structural reordering;
complex map, schema, and dictionary-based transformation;
content formatting at the presentation layer, such as XML to
HTML and WML transformation, or transformation based on
required media types of the receiver; personalization; security
credential mapping; and other transformations.

Transformations also may include content aggregation and
splitting. For example, multiple MIME parts in a message can
be aggregated or split. In a SOAP message, the headers can be
split from the body and each piece can be used in different
ways. The aggregation, splitting, enrichment, filtering, and
mapping techniques described herein can be implemented to
provide interoperability of application messages across dif-
ferent standards. Further, content encoding can be performed.
Service interface virtualization techniques can be achieved by
using transformations to carry out interface splitting and
interface versioning.

Further, application message payload transformation logic
108 may be configured to parse message content and then
perform content-based lookup, extraction, routing and distri-
bution. For example, a transformation can specify extracting
particular content from an application message payload, plac-
ing the content in a new message, and distributing the new
message to another node, such as a monitoring node.

Additionally or alternatively, application message payload
transformation logic 108 may be configured to perform con-
tent validation and data validation based on data structure and
data type, for either a source message or destination message.
In this embodiment, application message payload transfor-
mation logic 108 examines payload field values and deter-
mines, based on a transformation schema, whether the field
values are valid in terms of structure and content. If field
values are not valid, then the transformation schema specifies
how to transform the values into valid values. Thus, semantic
message content transformation for an application payload
can be performed.

Additionally or alternatively, application message payload
transformation logic 108 may be configured to perform code
page translation. In code page translation, normalized content
as maintained by a service (e.g., Unicode character encoded
content) is mapped to a locale-specific content encoding.
Elements representing times, dates, calendar entries, etc., can
be transformed into an encoding or format that a receiving
application requires. Alternatively, a request message that
conforms to alocally required content encoding may be trans-
formed into a normalized content encoding and then sent to a
service.

Embodiments allow adaptation and extension of the
mechanisms that perform application message payload trans-
formation. For example, an administrator or other user can
add new or different XSLT Transforms, Parser Plugin Trans-
forms, or Custom Transforms to accomplish particular
desired forms of application message payload transforma-
tion. Thus, the user can build upon existing transform logic
that is available, using transforms that have been uploaded by
the same user or other user. Therefore, a user can dynamically
apply transform logic without bringing down the host device
to install new software.

US 9,185,082 B2

9

Further, “chain” transformation processing is supported in
which a network element may apply transform logic succes-
sively on an application message payload. Thus, more than
one transform may be applied successively to a content pay-
load that is retrieved from an incoming message before the
payload is transformed into result content in an outgoing
message. In an embodiment, an overall transform step com-
prises one or more transform steps, implemented in one or
more transform bladelets in a workflow that successively
transforms the content.

Embodiments are implemented in network elements such
as routers and switches. As a result, embodiments implement
the notion of sandboxing, in which message transformation is
performed within a network element before messages reach
applications. This approach provides isolation of the trans-
formation functions and allows a single network element to
transform all messages destined to multiple instances of an
application.

3.0 Application Message
Approaches

This section describes functions performed to accomplish
application message payload transformation for an incoming
message represented in an XML format.

3.1 XSLT-Based Transformation

In one embodiment, XSL. Transform (“XSLT”) based
transformation is performed. In this approach, an XSLT
specifies how an input message is transformed to produce an
output message.

The XSLT is created in advance of message processing,
based on known schema of input messages and output mes-
sages. The XSLT can be created using any existing XSL'T
design tool. During runtime, an XSLT processor in the appli-
cation message payload transformation logic 108 receives the
XSLT and an input message. The XSLT processor applies the
transform to the message and produces an output message.
The application message payload transformation logic 108
then directs other functional elements of the network element
106 to forward the message to its destination.

The XSLT can produce an output message having an XML
payload or a non-XML payload. FIG. 2A is a block diagram
showing functional elements that may be used in application
message payload transformation logic 108 to perform appli-
cation message payload transformation either for an XML
payload or a non-XML payload. When an inbound message
comprises an XML payload 204, the XML payload is
received at XSLT translator 202. The translator 202 applies a
previously created XSLT transform 210 to the message,
resulting in generating an output message 214.

In another embodiment, when a non-XML input message
is used, during design time an extension to the AON Message
Parser component is made and registered with AON so that a
non-XML input message can be parsed to produce a corre-
sponding DOM Source 206, or emit SAX events that a SAX
reader 208 reads, for an equivalent XML input message. The
DOM Source 206, or output of the SAX reader 208 after
processing by a SAX transformation handler 212, provides
the XSLT translator 202 with input equivalent to an XML
input message. The translator 202 applies a previously cre-
ated XSLT transform 210 to the message, resulting in gener-
ating an output message 214.

Thus, the xmlDoc reader, non-XML Doc Reader, CSV
Reader, and FIX Reader referenced in FIG. 2A represent
extensibility mechanisms for the application message pay-
load transformation logic 108.

In one embodiment, translator 202 comprises the XALAN
processor, which is supplied with the JAVA Development Kit
from Sun Microsystems, Inc. Alternatively, the JD-XSLT
processor may be used.

FIG. 2B is a block diagram of an embodiment that uses
compiled XSLT (XSLTC) based transformation. The ele-

Payload Transformation

10

15

20

25

30

35

45

50

55

60

65

10

ments of FIG. 2B function in a manner that is similar to the
XSLT-based transformation approach of FIG. 2A. However,
the elements of FIG. 2B provide performance advantages
over the approach of FIG. 2A. For example, in FI1G. 2B, XSL.
transforms are compiled into to Translets 216. Each Translet
216 is a JAVA class that is generated as a result of compiling
a specified XSLT transform using XSLTC compiler 218. An
XSLTC compiler and associated framework for use as
XSLTC translator 202 is available in the Apache open source
project, and is specifically available at the time of this writing
linked in the folder /xalan-j/xsltc/ of the domain “xml.apa-
che.org” on the Internet. Alternatively, an XSLTC framework
is commercially available under the trade name Gregor from
Ambrosoft.

The binary Translets files 216 are used to transform an
incoming message to an outgoing message. Once XSL trans-
forms are compiled, Translet classes are created and can be
packaged in a JAR file and made available to the XSLTC
translator 202. During runtime, the XSLTC translator 202
uses the Translets to apply a transformation to an incoming
message.

3.2 Message Flow within a Network Element

In one embodiment that is implemented using Cisco
AONS, transformation of data present in a message is accom-
plished by designing a flow comprising of three tasks: data
extraction, transformation and composition. Each of the tasks
is implemented using an AONS Bladelet. An input message is
processed through various components before data present in
the message is transformed and put in the outbound message,
as now described.

FIG. 3 is a data flow diagram that describes a transforma-
tion data flow in which data from a message is transformed
and provided in an outbound message. In step 1, message
content to be transformed is extracted from the input (request
or response) message 302 and provided as an input “msg-
content” element to MIMEExtractor bladelet 304. The
MIMEExtractor Bladelet also receives additional content
search criteria and extracts MIME contents from the message
exports it in a content list flow variable.

In step 2, a Transformer Bladelet 306 receives a list of
content to transform and a transform profile name. Based on
the transform profile, the Transform Bladelet 306 transforms
contents from the input content list by invoking a transform
handler (step 3) of the XSLT transformer 202. The invocation
of'step 3 causes the XSLT transformer 202 to invoke a runtime
element of XSLT processor 310, at step 3a.

The Transform Bladelet 306 receives an additional param-
eter (not shown) to decide if the contents in the input content
list should be replaced by the transformed contents. Ifnot, the
Transform Bladelet 306 places the transformed contents in an
output content list flow variable, which is passed to MIME-
Builder 308, which takes the transformed contents from the
flow variable content list and takes a MIME Content object.
The MIMEBuilder element attaches the transformed content
and creates an output MIME content object.

A CreateMessage Bladelet 312 takes the MIME content
object that has the transformed content, creates an output
message 314, and sends the output message to the indicated
destination using the parameters from the inbound message
302. In an embodiment, all steps of FIG. 3 are executed in
software elements that are hosted in a network infrastructure
element, such as a router or switch. In an embodiment, appli-
cation message payload transformation logic 108 (FIG. 1A,
FIG. 1B) implements the elements and functions of FIG. 3.

In one embodiment, the transformation algorithms and
logic described herein are implemented in a Transformation
Bladelet and Transformation Service, which are described
further herein. In general, the Transformation Bladelet
receives an input content list and applies a transformation to
result in creating an outgoing transformed content list. The

US 9,185,082 B2

11

Transformation Bladelet also receives an overwrite option,
which specifies whether the contents in the input content list
should be replaced by the corresponding result content. The
Transformation Bladelet also receives two profile param-
eters; a first profile parameter specifies a style sheet to use,
and the second profile parameter specifies a specific parser
plug-in to use.

FIG. 4 is a flow diagram of one embodiment of a process of
application message payload transformation. In step 402,
Initialization is performed. In one embodiment, initialization
comprises reading the Bladelet parameters, including an
inputContentList, overwriteOption, stylesheetProfile and
parserPluginProfile. Initialization also includes retrieving a
Transform Service Implementation object.

As indicated at step 404, for each content element in the
input content list, the following steps are performed. In step
406, a content element is selected from the list, and a trans-
form Source object (in Src) is created. In one embodiment,
step 406 comprises determining whether a content stream is
available (step 408), and if so, creating a stream source (step
410). Applications sometimes use content streams as a means
for reducing the memory requirements for storing message
payloads. Otherwise, as tested at step 412, if the content
element comprises XML or SOAP content, then a DOM
Source is created at step 414.

In step 416, a Stream Result object is created to hold the
result of the transformation. Streaming transform for XML
(STX) may be used to create stream results.

In step 418, a TransformService.transform method is
invoked. The following elements are passed to the method: in
Sre, styleSheetProfile, parserPluginProfile. A “result” vari-
able of the method contains the result of the transformation.

In step 420, a resultContent object is prepared from the
result of the transformation. In one embodiment, step 420
involves inspecting the content to determine if it is XML
content, and if so, creating an XML result content value from
the result data returned in step 418. Otherwise, the result is in
stream content.

As indicated at step 422, if more content is present in the
input content list, then control transfers to step 404.

Atstep 424, if the overwrite flag is true, then in step 426 the
contents in the input content list are replaced with the corre-
sponding result content object.

In step 428, the result of the content object list is placed in
the flow variable TransformedContents. In step 430, the out-
put Path Success is set and control returns to a calling method.
When the process of F1G. 4 returns, other logic in the network
element is responsible to forward the output message to the
destination identified in the input message. Such a forwarding
operation includes selecting an output interface and using a
switching system, such as the switching system of a packet
data router or a packet data switch, to forward one or more
packets containing the output message to a destination. Thus,
in one embodiment, the approach herein is implemented in a
system that provides both application message payload trans-
formation functions and logic for receiving packets, perform-
ing a forwarding or routing decision, and forwarding or rout-
ing the packets to destinations.

5

20

25

35

40

12

If an exception occurs, as indicated at step 432, a Bladele-
tException is created and the exception is thrown.

3.3 Transformation Design Example

This section describes parameters that may be used, in one
embodiment, with the Transformation Bladelet and Transfor-
mation Service.

3.3.1 Transformation Bladelet and Parameters

This section describes input, output and exported param-
eters for the Transformation Bladelet, according to one
embodiment. In an embodiment, input parameters include
“Input,” “OverwriteContent,” “Stylesheet Profile,” “Parser-
PluginProfile,” and “Update Message.”

The Input Parameter has the type ContentListterator. This
parameter specifies a list of contents to be transformed. Con-
tent can be XML or SOAP content, or stream content that may
have some non-XML data.

The OverwriteContent parameter is a Boolean value that
specifies if the contents in the input list should be replaced
with the transformed contents. If true, the input contents are
replaced with the transformed result content. If false, a list is
created with the resulting transformed contents, and the list is
exported in the TransformationResult flow variable.

The StylesheetProfile parameter is a Policy parameter that
specifies the name of the transformation profile to use. Each
transformation profile comprises information about which
XSLT Transform file to use, Vendor name and Transform
Package name. Using the attributes defined in a profile, the
transformation service selects a transform from a vendor-
specific transform package and applies the transform to the
input parameter. A profile also can specity a particular XSLT
Processor to use.

The ParserPluginProfile is a Policy parameter that specifies
a parser plugin profile. It also specifies a default factory for
XSLT based transformation. Customer developed parser plu-
gin to parse specific non-xml content can be provided a in
transform parser bundle and can be specified in this profile.

The UpdateMessage parameter is a Message that specifies
if message content should be replaced by transformed con-
tent. The UpdateMessage parameter can take a flow variable
value that corresponds to request or response message.

In an embodiment, one output parameter is provided and
comprises a TransformedContents parameter of type Con-
tentListlterator. The Transformed Contents parameter defines
a flow variable that contains the list of transformed contents.

In an embodiment, one exception is defined, and may be
named the Transform-Failures exception. If the transforma-
tion operations defined herein are successful, an output path
of Success is set. However, if an exception occurs, an excep-
tion ID is set, and a recoverable Bladelet Exception is thrown.
An exception can occur, for example, due to an incorrect
transformation or parser profile, bad input data, use of a bad
transform, etc.

3.3.2 Transformation Policy Configuration

In one embodiment, a transformation policy file defines a
set of properties that specify which XSLT Transform to use
from a specific Transform Bundle. Table 2 identifies example
attribute names and attribute descriptions that can be used in
an implementation.

TABLE 2

TRANSFORMATION POLICY FILE CONTENTS

Attribute Name

Description

StylesheetName

Specifies the name of the transform file to use. The file must be
present in the Transform Bundle specified by the parameters below.
The transform file indicates what specific fields to transform and

what output fields should result from the transformation.

US 9,185,082 B2
13
TABLE 2-continued

14

TRANSFORMATION POLICY FILE CONTENTS

Attribute Name

Description

BundleName
Content-Type

UseCompiledTransform

TransformerFactory

Specifies the name of the transform bundle.

This is used to set the content type of the target content when the
input content is stream content and its type is not known.

If “Yes’, then it indicates that the specified transform be compiled.
Specifies XSLT Transformer that will be used in XSLT Based
transformation, such as

jd-xsltorg.apache.xalan.processor. TransformerFactoryImpl

3.3.3 Transform Parser Policy Configuration

In an embodiment, a transformation parser policy file
defines a set of properties that specity a Content Parser Plugin
to use in transformation. Table 3 identifies example attribute
names and attribute descriptions that may be used in an
embodiment.

TABLE 3

20

class implements the initialization and transformation logic,
extracts Bladelet parameters from the Bladelet context and
invokes the transformation function using the Transformation
Service.

The Transformation Service class of FIG. 5 comprises one
or more classes that implement specific Transformer and

EXAMPLE TRANSFORM PARSER POLICY FILE

Attribute Name Description

ParserClassName

Specifies the name of the content parser plugin class. In one

embodiment, this class implements the org.xml.sax. XMLReader
interface. Alternately the class can extend the abstract class
com.cisco.aons.service.transformTransformXMLReader.

BundleName
AONSTransformerfactory

The content parser plugin class is used to parse data from input
stream content and provide equivalent XML content, which is used
as input for XSLT Transformation.

Specifies the name of the Parser Plugin Bundle.

This parameter is optional and specifies a factory that implements

an XSLT transformer.

3.3.4 Class Implementation
Table 4 describes interfaces and classes that can be used to
implement a transformation service.

TABLE 4

Transformer Factory classes based on either the XSLT trans-
formation mechanism described herein or an external trans-
formation mechanism. External mechanisms may be used to

EXAMPLE TRANSFORMATION SERVICE CLASSES

Class/Interface Description

TransformationService

TransformationServiceImpl

AONSTransformer

This interface is derived from a Service interface in AONS. It
provides methods that perform message transformation.

This class implements the TransformationService interface. It
instantiates and initializes specific transformers.

This interface defines methods that perform transformation. A

specific transformer must provide an implementation of this

interface. An example of specific transformer is
XSLTTransformer.
AONSTransformerFactory

This interface defines a factory interface for a transformer. A

specific transformer factory must implement this interface.

An example of specific transformer factory is
XSLTTransformerFcatory.
TransformationBladelet

This class defines a Transformation Bladelet and uses

TransformerServiceImpl to perform message transformation.

FIG. 51s aclass diagram that describes high-level program-
matic classes that can be used to implement transformation
functions in an object-oriented programming environment.
The classes of FIG. 5 can be classified based on the function-
ality they provide. For example, a class implementing the
Transformation Bladelet functions described herein is the
TransformationBladelet class. The TransformationBladelet

60

65

invoke transformation functions that are provided by third
party applications. Examples of such applications include
Contivo and Trace Financial.

The Parser Extension class of FIG. 5 enables extensions to
an AONS parser. In one embodiment, AONS supports XML
and non-XML messages. XML Messages are easily under-
stood and parsed by AONS. However, for non-XML mes-

US 9,185,082 B2

15

sages an extension is provided that can understand the non-
XML messages and provide a corresponding equivalent
XML message. The extension implements an XML Reader
interface by extending the AbstractXMIReader class. In this
approach, the extension emits SAX messages for an equiva-
lent XML message format.

FIG. 7 is a block diagram of a software stack that may be
used to implement one embodiment of application message
payload transformation in a network infrastructure element.
A first lower layer 704 comprises a C-based parsing and
XSLT library, and a JAVA-based XML parser such as Xerces
from the Apollo open source project. Optionally, a third-party
runtime library for a third-party transformer may be included,
such as the Contivo runtime library. A second lower layer 706
comprises an XSLT adapter, and a JAVA-based XSLT proces-
sor. Optionally, a third-party transformation handler module
may be included, such as the Contivo transformation handler.

A transformation server 710 runs logically on the preced-
ing elements of F1G. 7. Transformation server 710 is coupled
to a handler registry for registering transformation handler
functions in the transformation server.

A transformation bladelet 712 runs logically on the trans-
formation service and performs the functions previously
described to generate one or more transformed messages 714.
The transformation bladelet 712 also can generate first and
second messages 716, 718 or signals indicating whether a
message was transformed (message 716) or not transformed
(message 718).

One or more transformation functions 720 are coupled to
transformation bladelet 712 and determine what specific
transformation operations are performed. For example, an
XSLT-based transformation function 722 may comprise a
mapping of name-value pairs for input messages and output
messages. Functions 720 include an enumeration 724 of all
installed functions and a result transformation 726 that indi-
cates how to map the source message to a flow variable for
output.

3.3.5 Creating and Deploying Transformations

FIG. 6A is a block diagram showing steps involved in one
embodiment of creating and deploying transformations in a
network infrastructure element; FIG. 6B is a block diagram
showing steps involved in one embodiment of creating and
deploying transformations in a network infrastructure ele-
ment.

Referring first to FIG. 6A, in step 1, a transformation is
defined and created in abstract form. Typically a business
analyst associated with an enterprise that owns or operates a
network (“customer’) has responsibility to define required
data transformations, based upon the applications that the
customer uses. In step 2, the transformation is generated and
stored using a third-party data transformation tool. The output
of the tool may comprise one or more XSLT style sheets or
custom program code. At step 3, such output of the tool is
stored in a file system.

At step 4, an administrator logs in to a configuration and
provisioning server. At step 5, the administrator initiates an
upload function. As shown at step 6, the XSLT style sheets or
custom code that was stored at step 3 is uploaded from the file
system to the configuration and provisioning server, and

10

15

20

30

35

40

45

50

55

16

packaged appropriately for provisioning or deployment. At
step 7, the XSLT style sheets or custom transformation code
is provisioned to a network device 110.

In one embodiment, the network device 110 hosts an
AONS Design Studio (ADS) application and an AONS blade.

Referring now to FIG. 6B, in another embodiment, a trans-
formation program bundle is created using Cisco’s AONS
with the following steps. First, a transform bundle and a
transform plugin bundle are created. For example, a first
bundle 608 comprising a manifest, one or more XSLT trans-
form packages, and one or more JAR files is created using the
AONS Design Studio (ADS) 602, commercially available
from Cisco Systems, Inc. The user provides the name of the
package, version, vendor name, description, properties of the
bundle, etc., and then adds one or more XSLT files or pack-
ages to create a transform bundle. Similarly, a second bundle
610 is created comprising a parser plugin class and one or
more JAR files. Once each bundle is created, the bundle is
saved in a file in a location that is specified by the user.

The transform bundle and the transform parser plugin
bundle are uploaded and registered in an AONS management
application as follows. The user logs on to an AONS Man-
agement Console (AMC) 604 that the user uses to manage
one or more AONS nodes 606 in the user’s network. The user
selects the Admin Tab, selects the Transform button, and
selects the Upload Transform Package menu item. The user
selects the transform bundle file 608 file and clicks UPLOAD.
In response, the user interface displays all extensions pro-
vided in the package. The user selects Register to register the
extensions in AMC 604. The same steps are followed to load
the transform parser plugin bundle 610 for registering any
transform parser extensions.

Registration causes AMC 604 to create and store a trans-
form policy 612 that references the transform bundle 608 and
contains an instantiated class based on the XSLT transform
specified in the transform bundle 608. Registration also
causes AMC 604 to create and store an XML parser plugin
614 that references the parser plugin bundle 610 and contains
an instantiated class for the parser plugin class defined in the
bundle.

To deploy the bundles in an AONS node 606, the following
steps are utilized. Working with AMC 604, the user selects a
Policy Tab, Application Policy, and Global Level menu item.
The user selects the bundle that has the packages registered in
steps above. The user selects Deploy to deploy the bundle.

In an embodiment, transformation information metadata is
provided as part of a transformation bundle. The metadata
defines all transformation extensions that are present in a
corresponding transformation bundle, which can be either an
XSLT transform bundle or a content parser plugin bundle.
One or more extensions can be present in a particular bundle.
In an XSLT transform bundle, each extension specifies a
name that is used to identify the extension and serves as a
filename, a display name, and version information. If the
bundle is a parser plugin bundle, similar fields specify the
class name that implements the XML Reader interface, the
display name of the extension, and version information. Table
5 presents an example Transformation Bladelet Info File.
Table 6 presents an example XML schema defining the trans-
formation information.

TABLE §

TRANSFORMATION BLADELET INFO FILE

<?xml version="1.0" encoding="UTF-8"?>
<!-- XML file generated by XMLSPY v2004 rel. 4 U (http://www.xmlspy.com)-->
<bladelet-info xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:noNamespaceSchemalocation=""

name="transform”

displayNameKey="transform.bladelet.name”

US 9,185,082 B2

17 18
TABLE 5-continued

TRANSFORMATION BLADELET INFO FILE

versionId="1"
categoryKey="transformation.category.name”
bundle="TransformBladelet.properties”
bladeletClass="com.cisco.aons.bladelet.v1. TransformationBladelet”>
<icon-ref>
<palette-icon href="“sign16Icon.gif”/>
<document-icon href="sign32Icon.gif"/>
</icon-ref>
<exceptions>
<exception id="“Transform-Failures”
key="exception.transformfailures.label”
desc="“Transform failures™
descKey="exception.transformfailures.desc”
/>
</exceptions>
<bladelet-design>
<bladelet-parameters>
<configuration-group name="Transformation” key="“cg.transformation” >
<parameter-group name="“ContentToTransform”
key=“cg.transformation.xslt.pg.contenttotransform”>
<parameter name="Input” type="ContentListIterator”
allowVarBinding="true”
allowUserInput="false”
key="cg.transformation.xslt.pg.contenttotransform.p.input” />
<parameter name="OverwriteContent”
type=“boolean”
key="cg.transformation.xslt.pg.contenttotransform.p.overwritecontent”
optional=“true” />
</parameter-group>
<parameter-group name="ParsingBundle”
key="cg.transformation.xslt.pg.parsingbundle”>
<!-- Assuming that the default parser plugin is in the policy
set; if unspecified use the default builtin -->
<parameter name="ParserPluginProfile”
type=“policy”
domain="com.cisco.aons.transformation. TransformationParserPolicy”
key="cg.transformation.xslt.pg.parsingbundle.p.parserplugin”
allowVarBinding="false”
allowUserInput="false”
optional="“true”/>
</parameter-group>
<parameter-group name="TransformingBundle”
key=“cg.transformation.xslt.pg.transformingbundle”>
<parameter name="StylesheetProfile”
type=“policy”
domain="com.cisco.aons.transformation. TransformationPolicy”
key="cg.transformation.xslt.pg.transformingbundle.p.stylesheetprofile”
allowVarBinding="false”
allowUserInput="false” />
</parameter-group>
</configuration-group>
</bladelet-parameters>
</bladelet-design>
<bladelet-deployment>
<system-params/>
</bladelet-deployment>
<bladelet-runtime>
<export-params=>
<!-- These are parameters that the bladelet puts in the context -->
<parameter name="TransformedContents”
key=“transformed.contents”
type="“ContentListIterator”/>
</export-params>
</bladelet-runtime>
<output-paths number="static’>
<output-path label="success” key="success.label”/>
<output-path label="fail” key="fail.label”/>
</output-paths>
</bladelet-info>

US 9,185,082 B2

19
TABLE 6

20
TABLE 6-continued

TRANSFORMATION BLADELET INFO FILE

TRANSFORMATION BLADELET INFO FILE

<?xml version = “1.0” encoding = “UTF-87?7>
<!--Generated by Turbo XML 2.4.1.100. Conforms to w3c
http://www.w3.0rg/2001/XMLSchema-->
<xsd:schema xmlns:xsd = “http://www.w3.0rg/2001/XMLSchema”
elementFormDefault = “qualified”>
<xsd:element name = “TransformExtensionInfo>
<xsd:complexType>
<xsd:sequence™>
<xsd:choice>
<xsd:element ref = “TransformInfo™/>
<xsd:element ref = “ParserPluginInfo™/>
<f/xsd:choice>
<xsd:element ref = “AONSVersion”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name = “TransformInfo™>
<xsd:complexType>
<xsd:sequence™>
<xsd:element ref = “XSLTTransformName”
maxOccurs = “unbounded”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name = “ParserPluginInfo”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element ref = “ParserClassName” maxOccurs =
“unbounded”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name = “AONSVersion™>
<xsd:complexType>
<xsd:attribute name = “version” use = “required”>
<xsd:simpleType>
<xsd:restriction base = “xsd:string”>
<xsd:minLength value = “1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name = “XSLT TransformName”>
<xsd:complexType>
<xsd:attribute name = “name” use = “required”>
<xsd:simpleType>
<xsd:restriction base = “xsd:string”>
<xsd:minLength value = “1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name = “display-name” use = “required”>
<xsd:simpleType>
<xsd:restriction base = “xsd:string”>
<xsd:minLength value = “1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name = “version” use = “required”>
<xsd:simpleType>
<xsd:restriction base = “xsd:string”>
<xsd:minLength value = “1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>

10

15

20

30

35

40

45

50

55

</xsd:element>
<xsd:element name = “ParserClassName™>
<xsd:complexType>
<xsd:attribute name = “class-name” use = “required”>
<xsd:simpleType>
<xsd:restriction base = “xsd:string”>
<xsd:minLength value = “1”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name = “display-name” use = “required”>
<xsd:simpleType>
<xsd:restriction base = “xsd:string”>
<xsd:minLength value = “1”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name = “version” use = “required”>
<xsd:simpleType>
<xsd:restriction base = “xsd:string”>
<xsd:minLength value = “1”/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>

TABLE 7

TRANSFORMATION INFO SAMPLE FILE
FOR PARSER PLUGIN EXTENSION

<?xml version = “1.0” encoding = “UTF-877>
<TransformExtensionInfo xmlns:xsi =
“http://www.w3.0rg/2001/XMLSchema-instance”
xsi:noNamespaceSchemalocation = “transform-info.xsd”>
<ParserPluginInfo>
<ParserClassName class-name =
“sample.csvplugin.CSVReader” display-name =
“CSV Parser” version = “1”/>
</ParserPluginInfo>
<AONSVersion version = “17/>
</TransformExtensionInfo>

TABLE 8

TRANSFORMATION INFO SAMPLE FILE
FOR XSLT TRANSFORM EXTENSION

<?xml version = “1.0” encoding = “UTF-87?>
<TransformExtensionInfo xmlns:xsi =
“http://www.w3.0rg/2001/XMLSchema-instance”
xsi:noNamespaceSchemal.ocation =
“file:///D:/temp/transformationBundle/TransformExtensionInfo.xsd”>

<TransformInfo>

<XSLTTransformName name = “identity.xslt” display-name =

“Identity Transform” version = “1”/>

</TransformInfo>

<AONSVersion version = “1”/>
</TransformExtensionInfo>

TABLE 9

SAMPLE TEST TRANSFORMATION FLOW

<flow

description="This is a Transformation Flow”
interactionStyle="“Request-Response”

logging="none”

US 9,185,082 B2
21 22
TABLE 9-continued

SAMPLE TEST TRANSFORMATION FLOW

name="TransformationFlow”
sla==0">

<flow-vars>

<flow-var type="“SearchResultListIterator” name=“ME-Result”/>
<flow-var type=“Content” name="ME-Content”/>

<flow-var type=“ContentListIterator” name="Input”/>

<flow-var type=“ContentListIterator” name="TransformationResult”/>
<flow-var type=“Message” name="REQUEST__MESSAGE”/>
<flow-var type=“Message” name="RESPONSE_ MESSAGE”/>

</flow-vars>
<flow-steps>

<request-action id="100" >
<first-bladelet id="1000"/>

<bladelet
name="ForwardRequest:1”
id=*1000"
description="10 bladelet”>
<param-values name=“"PARAM-ABC”>
<value>*This is a test”</value>
</param-values>
<next-steps>
<response-link id="111"/>
<!-- <on-exception id=“3"/>-->
</next-steps>
</bladelet>

</request-action>
<response-action id="111">
<first-bladelet id="5000"/>
<bladelet name="TranformationBladelet:1”
description="Bladelet Description”
id="3000">
<param-values name="Input”
type="“ContentListIterator’>
<value>$RESPONSE_ MESSAGE.content().iterator()</value>
<!-- <value>$ME-Result.elementAt(0).elementAt(“Label”)</value> -->
</param-values>
<param-values name="UpdateMessage”
type="“Message”>
<value>$RESPONSE_ MESSAGE</value>
<!-- <value>$ME-Result.elementAt(0).elementAt(“Label”)</value> -->
</param-values>
<param-values name="StylesheetProfile” type="string”>
<value>Identity Transform</value>
</param-values>
<param-values name="ParserPluginProfile” type="string”>
<value>CiscoXSLT Transformation</value>
</param-values>
<exported-value name="TransformationResult” type="ContentListIterator”

bindId="TransformationResult”/>

</flow>

<next-steps>
<next-step label="“Success” id="“7000"/>
<next-step label="Fail” id=*“7000"/>
</next-steps>

</bladelet>
<bladelet
name="ForwardRequest:1”
id=*7000”

description="10 bladelet”>
<param-values name=“"PARAM-ABC”>
<value>*This is a test”</value>
</param-values>
<next-steps>
<!--<response-link id="2222"/>-->
<!--<on-exception id="3"/>-->
</next-steps>
</bladelet>
</response-action>
</flow-steps>
<compenstation-steps>
<first-bladelet id="1000"/>
<bladelet name="bladelet__5:1” id=1000" description="compenstaion step bladelet”>
<param-values name=“"PARAM-ABC”>
<value>*This is a compensation steps.”</value>
</param-values>
</bladelet>
</compenstation-steps>

US 9,185,082 B2

23
TABLE 10

24

SAMPLE TRANSFORMATION PARSER POLICY

<?xml version="1.0" encoding="UTF-8"?>

<AttributeDomain domainName="TransformationParserPolicy”>
<AttributeDefinition attributeName="AONSTransformerFactory”/>
<AttributeDefinition attributeName="ParserClassName”/>
<AttributeDefinition attributeName="“VendorName”/>
<AttributeDefinition attributeName="BundleName”/>
<AttributeDefinition attributeName="PluginJarFileName”/>
<PropertySet key="CiscoXSLTTransformation”>

<Attribute name=“AONSTransformerFactory”>

<!-- This is the default, and need not be specified. This is something we will open up to

allow
Java Plugins to handle third party transformers -->
<Value

value=“com.cisco.aons.com.cisco.aons.service.transform. XSLT TransformerFactory”/>

</Attribute>
<Attribute name="ParserClassName”>
<!-- sample CSV Parser. This is optional too. -->

<!-- <Value value=*“com.cisco.aons.service.transform. CSVReader”/> -->

<Value value="“sample.csvplugin. CSVReader”/>

</Attribute>

<Attribute name="“VendorName”>
<Value value=“acmelnc”/>

</Attribute>

<Attribute name="“BundleName”>
<Value value="testbundle”/>

</Attribute>

<Attribute name="PluginJarFileName”>
<Value value="“sample.jar”/>

</Attribute>

</PropertySet>
</AttributeDomain>

TABLE 11

SAMPLE TRANSFORM POLICY

<?xml version="1.0" encoding="UTF-8"?>
<AttributeDomain domainName="Transformation”>

<AttributeDefinition attributeName="“UseCompiled Transform”/>
<AttributeDefinition attributeName="translet-name”/>
<AttributeDefinition attributeName="destination-directory”/>
<AttributeDefinition attributeName="package-name”/>
<AttributeDefinition attributeName="jar-name’/>
<AttributeDefinition attributeName="generate-translet”/>
<AttributeDefinition attributeName="auto-translet”/>
<AttributeDefinition attributeName="ParserClassName”/>
<AttributeDefinition attributeName="StylesheetName”/>
<AttributeDefinition attributeName="TargetContentType”/>
<AttributeDefinition attributeName="TransformerFactory”/>
<AttributeDefinition attributeName="“VendorName”/>
<AttributeDefinition attributeName="BundleName”/>
<PropertySet key="Identity Transform™>

<Attribute name="StylesheetName”>

<Value value="Identity.xsl”/>
</Attribute>
<Attribute name="TargetContentType”>
<Value value="text/xml”/>

</Attribute>
<Attribute name="TransformerFactory”>

<Value

value="“org.apache.xalan.processor. TransformerFactoryImpl”/>
</Attribute>

<Attribute name="“VendorName”>
<Value value=“acmelnc”/>

</Attribute>

<Attribute name="“BundleName”>
<Value value="testbundle”/>

</Attribute>

</PropertySet>
</AttributeDomain>

4.0 Implementation Mechanisms—Hardware Overview

FIG. 8 is ablock diagram that illustrates a computer system
800 upon which an embodiment of the invention may be
implemented. The preferred embodiment is implemented

35

40

45

50

55

60

65

using one or more computer programs running on a network
element such as arouter device. Thus, in this embodiment, the
computer system 800 is a router.

Computer system 800 includes a bus 802 or other commu-
nication mechanism for communicating information, and a
processor 804 coupled with bus 802 for processing informa-
tion. Computer system 800 also includes a main memory 806,
such as a random access memory (RAM), flash memory, or
other dynamic storage device, coupled to bus 802 for storing
information and instructions to be executed by processor 804.
Main memory 806 also may be used for storing temporary
variables or other intermediate information during execution
of instructions to be executed by processor 804. Computer
system 800 further includes a read only memory (ROM) 808
or other static storage device coupled to bus 802 for storing
static information and instructions for processor 804. A stor-
age device 810, such as a magnetic disk, flash memory or
optical disk, is provided and coupled to bus 802 for storing
information and instructions.

A communication interface 818 may be coupled to bus 802
for communicating information and command selections to
processor 804. Interface 818 is a conventional serial interface
such as an RS-232 or RS-422 interface. An external terminal
812 or other computer system connects to the computer sys-
tem 800 and provides commands to it using the interface 814.
Firmware or software running in the computer system 800
provides a terminal interface or character-based command
interface so that external commands can be given to the com-
puter system.

A switching system 816 is coupled to bus 802 and has an
input interface 814 and an output interface 819 to one or more
external network elements. The external network elements
may include a local network 822 coupled to one or more hosts
824, or a global network such as Internet 828 having one or
more servers 830. The switching system 816 switches infor-
mation traffic arriving on input interface 814 to output inter-

US 9,185,082 B2

25

face 819 according to pre-determined protocols and conven-
tions that are well known. For example, switching system
816, in cooperation with processor 804, can determine a
destination of a packet of data arriving on input interface 814
and send it to the correct destination using output interface
819. The destinations may include host 824, server 830, other
end stations, or other routing and switching devices in local
network 822 or Internet 828.

The invention is related to the use of computer system 800
for application message payload transformation in a network
infrastructure element. According to one embodiment of the
invention, application message payload transformation in a
network infrastructure element is provided by computer sys-
tem 800 in response to processor 804 executing one or more
sequences of one or more instructions contained in main
memory 806. Such instructions may be read into main
memory 806 from another computer-readable medium, such
as storage device 810. Execution of the sequences of instruc-
tions contained in main memory 806 causes processor 804 to
perform the process steps described herein. One or more
processors in a multi-processing arrangement may also be
employed to execute the sequences of instructions contained
in main memory 806. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with
software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 804 for execution. Such a medium may take
many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 810. Volatile media includes dynamic
memory, such as main memory 806. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 802. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio wave and infrared data communica-
tions.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 804 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 800 can receive the data on the telephone line and use
an infrared transmitter to convert the data to an infrared sig-
nal. An infrared detector coupled to bus 802 can receive the
data carried in the infrared signal and place the data on bus
802. Bus 802 carries the data to main memory 806, from
which processor 804 retrieves and executes the instructions.
The instructions received by main memory 806 may option-
ally be stored on storage device 810 either before or after
execution by processor 804.

Communication interface 818 also provides a two-way
data communication coupling to a network link 820 that is
connected to a local network 822. For example, communica-

10

15

20

25

30

35

40

45

50

55

60

65

26

tion interface 818 may be an integrated services digital net-
work (ISDN) card or a modem to provide a data communi-
cation connection to a corresponding type of telephone line.
As another example, communication interface 818 may be a
local area network (LAN) card to provide a data communi-
cation connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, commu-
nication interface 818 sends and receives electrical, electro-
magnetic or optical signals that carry digital data streams
representing various types of information.

Network link 820 typically provides data communication
through one or more networks to other data devices. For
example, network link 820 may provide a connection through
local network 822 to a host computer 824 or to data equip-
ment operated by an Internet Service Provider (ISP) 826. ISP
826 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 828. Local network 822
and Internet 828 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 820 and
through communication interface 818, which carry the digital
data to and from computer system 800, are exemplary forms
of carrier waves transporting the information.

Computer system 800 can send messages and receive data,
including program code, through the network(s), network
link 820 and communication interface 818. In the Internet
example, a server 830 might transmit a requested code for an
application program through Internet 828, ISP 826, local
network 822 and communication interface 818. In accor-
dance with the invention, one such downloaded application
provides for application message payload transformation in a
network infrastructure element as described herein.

The received code may be executed by processor 804 as it
is received, and/or stored in storage device 810, or other
non-volatile storage for later execution. In this manner, com-
puter system 800 may obtain application code in the form of
a carrier wave.

5.0 Extensions and Alternatives

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

The preceding description has disclosed an approach for
performing application message payload transformation in a
network device. The application message payload transfor-
mation is performed based on policies that are defined
declaratively in terms of application endpoints and applica-
tion message content. The approach herein provides an
improved application message payload transformation
approach because a network device is more efficient in per-
forming such transformations, which occur outside the appli-
cation and the host of the application.

The approach herein has numerous benefits over prior
approaches. For example, the approach reduces the number of
processing locations at which a message is transformed.
Application endpoints are not required to perform message
payload transformation. As aresult, application resources can
focus on core application functions, rather than transforming
the messages that the application needs to consume based on
all other sending applications that are producing such mes-
sages.

Further, separating the management of message transfor-
mation policies from the actual message transformation

US 9,185,082 B2

27

enables a user or system to define such policies declaratively
in a single place, and apply them on all the network devices
where the transformation is done.

The approach herein is useful for any network gear vendor
that needs mechanisms to provide message transformation
capability in a networking device to enable easier application
integration.

What is claimed is:

1. A data processing apparatus, comprising:

a plurality of network interfaces that are configured to be
coupled to a data network for receiving one or more
packets therefrom and sending one or more packets
thereto;
one or more hardware processors;

a switching system coupled to the one or more hardware
processors and packet forwarding logic, wherein the
switching system and packet forwarding logic are
configured to receive packets on a first network inter-
face, determine a second network interface on which
to send the packets, and to send the packets on the
second network interface;

application message transformation logic comprising
one or more stored sequences of instructions which,
when executed by the one or more hardware proces-
sors, cause:

receiving one or more packets representing an input
application message from a sender application to a
receiver application;

extracting an application message payload from the
input application message;

identifying one or more first content elements in the
application message payload, wherein the one or
more first content elements comprise a first field and a
second field; wherein the first field is before the sec-
ond field in the one or more first content elements;

transforming the one or more first content elements into
one or more second content elements of an output
application message at least in part by:

reordering at least the first field and the second field to an
order that is expected by the receiver application,
wherein the first field is after the second field in the
one or more second content elements; and

performing a transformation based on code page trans-
lation, wherein the code page translation includes
mapping the one or more first content elements to a
locale-specific content encoding, wherein the locale-
specific content encoding includes elements repre-
senting times, dates, or calendar entries;

forwarding the output application message to a destina-
tion thatis identified in the input application message.

2. The apparatus of claim 1, wherein the input application
message is logically associated with Open Systems Intercon-
nection (OSI) network model Layer 5 or above.

3. The apparatus of claim 1, wherein the apparatus com-
prises any of a packet data router or a packet data switch
configured to couple to a packet-switched network.

4. The apparatus of claim 1, wherein the application mes-
sage transformation logic comprises one or more extensible
stylesheet language transforms, one or more parser plugin
transforms, and one or more custom transforms that are logi-
cally coupled and perform successive transformation opera-
tions on the application message payload.

5. The apparatus of claim 1, wherein the application mes-
sage transformation logic comprises sequences of instruc-
tions which, when executed, cause transforming the one or
more first content elements into the one or more second

10

15

20

25

30

35

40

45

50

55

60

65

28

content elements comprises changing a data value from the
one or more first content elements.

6. The apparatus of claim 1, wherein the application mes-
sage transformation logic comprises sequences of instruc-
tions which, when executed, cause applying an extensible
stylesheet language transformation file to the input applica-
tion message to generate the output application message.

7. The apparatus of claim 1, wherein a first data value
corresponds to the first field and a second data value corre-
sponds to the second field, wherein the first data value is
before the second data value in the one or more first content
elements, and the application message transformation logic
comprises sequences of instructions which, when executed,
cause reordering the first data value and the second data value,
and wherein the first data value is after the second data value
in the one or more second content elements.

8. The data processing apparatus of claim 1, wherein the
first field has a first same name in both the one or more first
content elements and the one or more second content ele-
ments; and wherein the second field has a second same name
in both the one or more first content elements and the one or
more second content elements.

9. The apparatus of claim 1, wherein the application mes-
sage transformation logic comprises sequences of instruc-
tions which, when executed, cause transforming the one or
more first content elements into the one or more second
content elements further comprises performing a transforma-
tion based on content validation, or data validation.

10. The apparatus of claim 1, wherein the application mes-
sage transformation logic comprises sequences of instruc-
tions which, when executed, cause:

performing the transformation based on one or more of

required media types of the receiver application, secu-
rity credential mapping, content aggregation, content
splitting, service interface virtualization, or performing
content-based lookup, extraction, routing and distribu-
tion.

11. A machine-implemented method comprising:

receiving one or more packets representing an input appli-

cation message from a sender application to a receiver
application;

wherein the one or more packets are received in a network

infrastructure data processing element comprising a plu-
rality of network interfaces that are configured to be
coupled to a data network for receiving one or more
packets therefrom and sending one or more packets
thereto, one or more processors, a switching system
coupled to the one or more processors and packet for-
warding logic, wherein the switching system and packet
forwarding logic are configured to receive packets on a
first network interface, determine a second network
interface on which to send the packets, and to send the
packets on the second network interface, and application
message transformation logic;

extracting an application message payload from the input

application message;

identifying one or more first content elements in the appli-

cation message payload, wherein the one or more first
content elements comprise a first field and a second field,
wherein the first field is before the second field in the one
or more first content elements;

transforming the one or more first content elements into

one or more second content elements of an output appli-

cation message at least in part by:

reordering at least the first field and the second field to an
order that is expected by the receiver application,

US 9,185,082 B2

29
wherein the first field is after the second field in the
one or more second content elements; and
performing a transformation based on code page trans-
lation, wherein the code page translation includes
mapping the one or more first content elements to a
locale-specific content encoding, wherein the locale-
specific content encoding includes elements repre-
senting times, dates, or calendar entries;
forwarding the output application message to a destination
that is identified in the input application message;
wherein the method is performed by one or more proces-
SOIS.

12. The method of claim 11, wherein the input application
message is logically associated with Open Systems Intercon-
nection (OSI) network model Layer 5 or above.

13. The method of claim 11, wherein transforming the one
or more first content items into the one or more second con-
tent items comprises applying an extensible stylesheet lan-
guage transformation file to the input application message to
generate the output application message.

14. The method of claim 11, wherein transforming the one
or more first content elements into the one or more second
content elements further comprises removing a field and a
corresponding data value from the one or more first content
elements.

15. The method of claim 11, wherein a first data value
corresponds to the first field and a second data value corre-
sponds to the second field, wherein the first data value is
before the second data value in the one or more first content
elements, and wherein reordering at least the first field and the
second field comprises reordering the first data value and the
second data value, and wherein the first data value is after the
second data value in the one or more second content elements.

16. The method of claim 11, wherein the first field has a first
same name in both the one or more first content elements and
the one or more second content elements; and wherein the
second field has a second same name in both the one or more
first content elements and the one or more second content
elements.

17. The method of claim 11, wherein transforming the one
or more first content elements into the one or more second
content elements further comprises performing a transforma-
tion based on content validation, or data validation.

18. The method of claim 11, wherein transforming the one
or more first content elements into the one or more second
content elements further comprises:

performing the transformation based on one or more of

required media types of the receiver application, secu-
rity credential mapping, content aggregation, content
splitting, service interface virtualization, or performing
content-based lookup, extraction, routing and distribu-
tion.

19. A non-transitory computer-readable storage medium
storing one or more sequences of instructions, which instruc-
tions, when executed by one or more processors, cause the
one or more processors to perform:

receiving one or more packets representing an input appli-

cation message from a sender application to a receiver
application;

wherein the one or more packets are received in a network

infrastructure data processing element comprising a plu-
rality of network interfaces that are configured to be
coupled to a data network for receiving one or more
packets therefrom and sending one or more packets
thereto, one or more processors, a switching system
coupled to the one or more processors and packet for-
warding logic, wherein the switching system and packet

10

15

20

25

30

35

40

45

50

55

60

65

30

forwarding logic are configured to receive packets on a
first network interface, determine a second network
interface on which to send the packets, and to send the
packets on the second network interface, and application
message transformation logic;

extracting an application message payload from the input

application message;

identifying one or more first content elements in the appli-

cation message payload;

wherein the one or more first content elements comprise a

first field and a second field;
wherein the first field is before the second field in the one or
more first content elements;

transforming the one or more first content elements into

one or more second content elements of an output appli-

cation message at least in part by:

reordering at least the first field and the second field to an
order that is expected by the receiver application,
wherein the first field is after the second field in the
one or more second content elements; and

performing a transformation based on code page trans-
lation, wherein the code page translation includes
mapping the one or more first content elements to a
locale-specific content encoding, wherein the locale-
specific content encoding includes elements repre-
senting times, dates, or calendar entries;

forwarding the output application message to a destination

that is identified in the input application message.

20. The non-transitory computer-readable storage medium
of claim 19, wherein the input application message is logi-
cally associated with Open Systems Interconnection (OSI)
network model Layer 5 or above.

21. The non-transitory computer-readable storage medium
of claim 19, further comprising sequences of instructions
which when executed cause applying an extensible stylesheet
language transformation file to the input application message
to generate the output application message.

22. The non-transitory computer-readable storage medium
of claim 19, further comprising sequences of instructions
which when executed cause removing a field and a corre-
sponding data value from the one or more first content ele-
ments.

23. The non-transitory computer-readable storage medium
of claim 19, wherein a first data value corresponds to the first
field and a second data value corresponds to the second field,
wherein the first data value is before the second data value in
the one or more first content elements, and wherein further
comprising sequences of instructions which when executed
cause reordering the first data value and the second data value,
and wherein the first data value is after the second data value
in the one or more second content elements.

24. The non-transitory computer-readable storage medium
of claim 19, wherein the first field has a first same name in
both the one or more first content elements and the one or
more second content elements; and wherein the second field
has a second same name in both the one or more first content
elements and the one or more second content elements.

25. The non-transitory computer-readable storage medium
of claim 19, further comprising sequences of instructions
which when executed cause performing a transformation
based on content validation, or data validation.

26. The non-transitory computer-readable storage medium
of claim 19, further comprises sequences of instructions
which, when executed, cause:

performing the transformation based on one or more of

required media types of the receiver application, secu-
rity credential mapping, content aggregation, content

US 9,185,082 B2
31

splitting, service interface virtualization, or performing
content-based lookup, extraction, routing and distribu-
tion.

32

